
Acta Technica 62 No. 1B/2017, 313–324 c© 2017 Institute of Thermomechanics CAS, v.v.i.

Software test data generation
algorithm based on multi-dimensional

space-time granularity

Wu Dafei1

Abstract. Based on the multi-dimensional space-time granularity, a kind of software test
data generation algorithm was proposed. The algorithm first uses the space-time function multi-
dimensional approach and granularity method, finds all feasible paths in the program. And it
generates proper initial software test data set for the partial feasible paths automatically; when
the correct software testing data can not be obtained by using the space-time function multi-
dimensional approach and granularity method, it can depend on the principal of making software
testing data set smallest and multi-dimensional space-time granularity thought. The software
testing data can be supplemented according to the predicate and sub path that never covered
by initial test data set. The new algorithm has a combination with predicate slice and DUC
expression, so it is able to judge the feasibility of the sub path from the source. Then it can
effectively to reduce the influence of unfeasible path on the algorithm performance. The algorithm
analysis and experimental results show that the algorithm can effectively reduce the software test
data bulk, and improve the test performance.

Key words. Software test, software test data automatic generation, multi-dimensional space-
time granularity, multi-dimensional approach; space-time function granularity.

1. Introduction

At present, dynamic software test has become a research focus of software testing.
In the dynamic software testing process, the generation of test cases is the key and
difficulty of the task. According to statistics, about 40% of the test costs was spent
on the design test cases [1]

Relying on a variety of test models and standards, the generation methods of
software test data like dependent on the syntax, predicate slices, program specifica-
tions, symbol execution and program execution were proposed [2–6]. Path coverage
is a typical test standard. The goal is to require that all paths of the program be
tested at least once at the end of the test. In literature [7, 8], a software test data

1Hunan University of Science and Engineering, Yongzhou, Hunan, 425199, China

http://journal.it.cas.cz

314 WU DAFEI

generation algorithm based on path coverage test is given by symbolic execution, as
the implementation of the symbol on the form of the array and the pointer is difficult
to deal with; In literature [9, 10], program execution and space-time function granu-
larity are used to solve the drawbacks of the array execution and pointers. However,
since each test only considers one predicate and one input variable, a large number
of iterations are required to automatically generate a new input that satisfies the
condition even if the branch condition in the path is a linear function of the input.
A new algorithm for a given path-dependent iteration is proposed in Literature [11].
The algorithm takes into account multiple predicates and multiple input variables
at same time. A set of initial inputs satisfying the given path is automatically gen-
erated by iteration using a randomly selected set of initial inputs. The algorithm
only uses the linear function to iterate, so it is only effective for the linear function,
and less effective for the nonlinear function.

In this paper, a software test data generation algorithm based on the idea of
multi-dimensional space-time granularity was proposed. The new algorithm first
uses the multidimensional approximation and granularity method of the space-time
function to find out the feasible path of the program and automatically generate
the appropriate initial software test data set for some feasible paths. When the
space-time function multi-dimensional approach and granularity methods can not
get the software test data correctly, it can depend on the principal of making soft-
ware testing data set smallest and multi-dimensional space-time granularity thought
for the predicate and sub path that never covered by initial test data set. The soft-
ware testing data can be supplemented according to the thought. Since the new
algorithm uses the DUC expression [6], it is possible to determine whether the sub
path is feasible from the source, so as to effectively reduce the influence of unfeasible
paths on the algorithm. The new algorithm combines the advantages of space-time
function multi-dimensional approach and granularity methods. And it relies on
multi-dimensional space-time granularity to supplement the software test data, thus
reducing the number of software test data and improving the test performance.

Definition 1. Path. A program module M can be regarded as a directed graph
G = (V,E, s, e), where V is the set of nodes in M , E is the set of edges in M , s is
the unique source node of M , indicating the beginning of the program module M ;
e represents the only sink nodes for M , meaning the end of program module M . A
node n means a piece of declaration statements or a conditional expression. From
node ni to node nj , a possible control transfer is regard as an edge (ni, nj) ∈ G. A
subpath P = {n1, n2, · · · , nk+1} ∈ G is a sequence of node ni, and (ni, ni+1) ∈ E,
∀ ∈ [1, k]; if n1 = s, nk+1 = e, then P is called a piece of path in program module
M .

Definition 2. Input variable. If a variable ik appears in an input statement
program of program module M or an input parameter of M , then ik is called the
input variable of ik. The definition domain Dk of input variable ik is a set for all the
possible values of ik. An input vector I = {i1, i2, · · · , im} ∈ (D1 ×D2 × · · · ×Dm)
is called a program input of program module M , which is called an input of M for
short. Herein, m is the number of the input variables in M .

Definition 3. Predicate. Simple predicate refers to the predicate only containing

SOFTWARE TEST DATA GENERATION ALGORITHM 315

single relational operator op; obviously, the simple predicate can be expressed as
E1opE2. Herein, op ∈ {<,≤, >,≥,=, 6=} , E1, E2 is the algebraic expression. Com-
pound predicate means the predicate of two or more than two simple predicates
connected by Boolean connectives AND or OR together. If there is a boolean vari-
able in the predicate, then TRUE can be expressed by 0 or a positive number, and
FALSE can be expressed by a negative number.

Definition 4. An unfeasible path. All predicate explanations [8] on a subpath
compose its path condition, which defines a path definition field. It ensures the
program to consist of all inputs that execute along the subpath. If the path definition
field of a sub-path is empty (φ), the sub-path is called an unfeasible sub-path.

The following Lemma 1 is clearly defined by the Definition 4: from Definition 4,
it is clear that the following Lemma 1 comes into existence.

Lemma 1. If a sub-path is an unfeasible sub-path, then all paths containing the
sub-path are unfeasible paths.

Definition 5. Space-time function. A simple predicate pr : E1opE2 can be con-
verted into the following form: F rel 0; herein: rel ∈ {<,≤,=} ;F is a direct
or indirect function of the input variable, and called the corresponding space-time
function of the predicate pr.

Definition 6. Multi-dimensional approach. For arbitrary space-time function F1

and a set of inputs I0, it is called the multi-dimensional approach of linear function
f1 =

∑m
i=1 a

1
ixi + b1 for F1. Herein, xi is the input variable; a1i is the constant

coefficient; b1 is the constant; a1i and b1 can be obtained from the following equations:

f1 (I0) = F1 (I0) ,

f1 (I0 + (∆x1
, 0, · · · , 0)) =

F1 (I0 + (∆x1 , 0, · · · , 0)) ,

...

f1
(
I0 +

(
0, · · · , 0,∆xm−1

, 0
))

=

F1

(
I0 +

(
0, · · · , 0,∆xm−1

, 0
))
,

f1 (I0 + (0, · · · , 0,∆xm)) =

F1 (I0 + (0, · · · , 0,∆xm
)) .

Theorem 1. For a given input I0, supposing the corresponding multi-dimensional
approach f1 of the space-time function F1 for the predicate p1 is f1, and the operator
is of F1 is rel1, then: 1) if f1 (I0) rel10 ⇒ I0 ensures the program to execute along
the sub-path p1; 2) if f1 (I0) rel10 ⇒ I0 ensures the program to execute along the
sub path p1.

Proof. It can be seen from Definition 6: f1 (I0) = F1 (I0), then f1 (I0) rel10 is set

316 WU DAFEI

up⇒ F1 (I0) rel10 is set up⇒ I0 ensures the program to execute along the sub path
p1. Proving by the same method, f1 (I0)¬rel10 is set up ⇒ I0 ensures the program
to execute along the sub-path p1, Q.E.D.

2. Software test data generation algorithm based on
multi-dimensional space-time granularity

2.1. Generation algorithm of initial software test data set

Based on the definitions, theorems and lemmas in section 1, the initial software
test data set generation algorithm is described as follows:

Step 1. By using the predicate slicing algorithm [6], the DUC expression rj .dj :
Uj : cj and operator relj corresponding in M of all the n predicates pj (j ∈ [1, n])
were obtained; and all the n dicerse input variables x1, x2, · · · , xm inM are obtained.

Step 2. Randomly generate a program input I0 =
(
x01, x

0
2, · · · , x0m

)
, order I0 = I0.

Step 3. For pk (k ∈ [1, n]) and input It1t2···tk−1 (herein, ti ∈ {0, 1} , i ∈ [1, k − 1],
and when k = 1, order It1t2···tk−1 = I0.

Step 3.1. If k ≥ 2 and ∼ pt11 ,∼ pt1t22 , · · · ,∼ p
t1t2···tk−1

k−1 /∈ ck, then skip to Step
3.2, otherwise skip to Step 3.5.

Step 3.2. By using Definition 6, according to the input It1t2···tk−1 , the multi-
dimensional approach fk of pk corresponded space-time function Fk can be solved.
Substitute It1t2···tk−1 into f t11 , f

t1t2
2 , · · · , f t1t2···tk−1

k−1 , fk (herein f
t1t2···ti−1

i = fi, i ∈
[1, k − 1]) and obtain a group of values θ = (θ1, θ2, · · · , θk).

Step 3.3. If θk relk0, then It1t2···tk−1 ensures the program execute along the
sub-path pt11 , p

t1t2
2 , · · · , pt1t2···tk−1

k−1 , pk. Order It1t2···t
0
k−1 = It1t2···tk−1 , f

t1t2···t0k−1

k =

fk, p
t1t2···t0k−1

k = pk, and record the path and its input as well as the multi-dimensional
approach set of space-time function; then, solve the vector I relying on Theorem 2,
order I1 = It1t2···tk−1 + I.

Step 3.3.1. If I1 ensures the program execute along the sub-path pt11 , p
t1t2
2 , · · · ,

p
t1t2···tk−1

k−1 ,∼ pk, then order It1t2···t
1
k−1 = I1, f

t1t2···t1k−1

k = fk, p
t1t2···t0k−1

k =∼ pk, and
record the path and its input as well as the multi-dimensional approach set of space-
time function; and then skip to Step 3.5.

Step 3.3.2. Otherwise, the solution of the program executing along the above
subpath can be found according to the space-time function granularity thought. If
it is able to find the input I

′

1 meeting the conditions in a given maximum num-
ber (if cannot, then order I

′

1 = φ), then use the Definition 6 and obtain the new
multi-dimensional approach f

′

1, f
′

2, · · · , f
′

k−1, f
′

k of F1, F2, · · · , Fk, order It1t2···t
1
k−1 =

I
′

1, f
t1
1 = f

′

1, f
t1t2
2 = f

′

2, f
t1t2···tk−1

k−1 = f
′

k−1, f
t1t2···t1k−1

k = f
′

k, p
t1t2···t1k−1

k =∼ pk, and
record the path and its input as well as the multi-dimensional approach set of space-

SOFTWARE TEST DATA GENERATION ALGORITHM 317

time function; and then skip to Step 3.5.

Step 3.4. If θk relk0 is not set up, then It1t2···tk−1 ensures the program exe-
cute along the sub-path pt11 , p

t1t2
2 , · · · , pt1t2···tk−1

k−1 ,∼ pk order It1t2···t
1
k−1 = It1t2···tk−1 ,

f
t1t2···tk−1

k = f
′

k−1, f
t1t2···t1k−1

k = f
′

k, p
t1t2···t1k−1

k =∼ pk, and record the path and its in-
put as well as the multi-dimensional approach set of space-time function; then, solve
the solution vector I according to Theorem 2, order the input I1 = It1t2···tk−1 + I.
Finally, record the path and its input as well as the multi-dimensional approach set
of space-time function; and then skip to Step 3.5.

Step 3.5. For another set of t1t2 · · · tk−1, repeat the Step 3.1 to 3.4, until all the
groups in t1t2 · · · tk−1 are tested, and then skip to Step 4.

Step 4. Repeat the Step 3 for k = k + 1, till k = n, and then skip to Step 5.

Step 5. End of the algorithm: for record of the obtained path and its input as
well as the multi-dimensional approach set of space-time function, if the path and
input are not empty, then the path is a feasible path, and the corresponding input
is a software test data meeting the path.

2.2. Supplement algorithm of software test data

Considering the test overhead, it is impractical to construct the appropriate soft-
ware test data for all paths in the program moduleM . Therefore, in this section, we
propose a new software test data addition algorithm, which is based on the idea of
multi-dimension. Before the description of a specific algorithm is given, the relevant
definitions are given as follows:

Definition 7. Sub-path pair. For software test data ti, assume that the corre-
sponding test path is Pi = bi1bi2 · · · bit, herein,

bi1bi2 · · · bit ∈ {p1,∼ p1, p2,∼ p2, · · · , pk,∼ pk} , p1, p2, · · · , pk

is all k predicates in program module M , then call (bi1, bi2) is the subpath pair
covered by software test data ti, herein j ∈ [1, t− 1]. The subpath pair set covered by
software test data ti is recorded as Ψi = bi1, bi2 {(bi1, bi2) , (bi2, bi3) , · · · , (bit−1, bit)}.
According to the software test data generation algorithm in Section 2.1, an initial
software test data set can be obtained. Multi-dimensional space-time granularity
refers to that based on the initial software test data set, first supplement the software
test data for uncovered predicate. And then selectively supplement the redundancy
software test data relying on the idea of subpath pair covering, in order to achieve
better test coverage.

According to the above definition, the supplementary algorithm can be described
as follows:

1) Assume that after using the initial software test data set generation algorithm,
the obtained initial software test data set is {t1, t2, · · · , tn}, and the covered paths
are {P1, P2, · · · , PN} , p1, p2, · · · , pk are all the k predicates in program module M .
Assume that the set of Pj covered predicates is Ωj . If i exists and makes pi /∈

⋃N
j=1 Ωj

318 WU DAFEI

or ∼ pi /∈
⋃N

j=1 Ωjj , then supplement new software test data t
′
for pi or ∼ pi.

2) Assume the obtained software test data set is {t1, t2, · · · , tm} after the supple-
ment of software test data in Step 1. For any software test data ti ∈ {t1, t2, · · · , tm},
assume the covered sub-path pair set is Ψi. Then the sub-path pair set covered
by software test data set {t1, t2, · · · , tm} is Ψ =

⋃M
j=1 Ψi. If sub-path pair set

{(b1, b2) , (b2, b3) , · · · , (bx−1, bx)} ∈ Ψ exists, but ∀ ∈ [1,M], there is

{(b1, b2) , (b2, b3) , · · · , (bx−1, bx)} /∈ Ψ ,

then supplement new software test data t” for sub-path b1, b2, b3 · · · , bx.

3. Algorithm analysis and experiment

The complexity of the algorithm is mainly concentrated in the initial software
test data set generation algorithm Step 3. In the worst case, for a program module
containing n predicates, the worst-case algorithm has a time complexity of O (2n),
since there may be at most 2n different paths in the program. However, in prac-
tice, the actual complexity of the algorithm is much lower because the condition
∼ pt11 ,∼ pt1t22 , · · · ,∼ p

t1t2···tk−1

k−1 /∈ ck in Step 3.1 of the initial software test dataset
generation algorithm will cause a large number of unfeasible paths to be removed
in time. In addition, the method of automatically generating software test data
by using the spatio-temporal function granularity method, even for the linear func-
tion, needs to be tested several times in order to find the appropriate software test
data; The new algorithm proposed in this paper combines the advantages of both
the multidimensional approximation and the spatio-temporal function granularity.
Therefore, the new algorithm requires only one iteration of the linear function to get
the appropriate software test data. The use of non-linear function, multidimensional
approximation and spatio-temporal function granularity method makes the new al-
gorithm converge faster from the initial input to the satisfying software test data.
Moreover, the new algorithm relies on the idea of multidimensional spatio-temporal
granularity to update the software test data for predicates and sub-paths that are
not covered by the initial software test dataset, So there is better test coverage per-
formance. The program module M1 is illustrated as an example, and the program
module M1 is shown in Fig. 1.

For M1, according to the algorithm described in Section 2, the specific imple-
mentation steps are as follows.

First solve the DUC expression of program module M1. Assume the automati-
cally generated initial input is I0 = (1, 2).

For p1, it can be seen from algorithm Step 3.1 that I0 ensures the execution of
∼ p1. According to algorithm Step 3.4, another group of solutions I1 = (2, 0) can be
obtained. And I1 ensures the execution of p1. Then get Γ←< −x+ y, p1, (3, 2) >.

For p2: for the record 1 in Γ 1 :< −x + y,∼ p1, (1, 2) >, it can be seen from
algorithm Step 3.1 that (1, 2) ensures the execution of ∼ p2. Record Γ ←<

SOFTWARE TEST DATA GENERATION ALGORITHM 319

{−x+ y, x+ 3y} , {∼ p1,∼ p2} , (1, 2) >, then another group of solutions I1 = (−1, 0)
can be obtained from algorithm Step 3.2 and 3.3; obviously, (–1, 0) ensures the ex-
ecution of path ∼ p1, p2. So

Γ←< {−x+ y, x+ 3y} , {∼ p1,∼ p2} , (−1, 0) > .

Fig. 1. Program module M1

For the record 2 in 2 :< −x+ y, p1, (3, 2) >, we also can get

Γ←< {−x+ y, x+ 3y} , {p1, p2} , (0.5,−0.5) >

and Γ←< {−x+ y, x+ 3y} , {p1,∼ p2} , (3, 2) > .

For p3, since c3 = {∼ p2}, so it can be known from algorithm Step 3.4 that only
two pieces of records need to be considered in Γ, < {−x+ y, x+ 3y} , {∼ p1,∼ p2} ,
(1, 2) > .

For < {−x+ y, x+ 3y} , {∼ p1,∼ p2} , (1, 2) >), we can only obtain

Γ←< {−x+ y, x+ 3y, x− 4y + 6} , {∼ p1,∼ p2, p3} , (1, 2) > ;

while for path {∼ p1,∼ p2,∼ p3}, it cannot solve the software test data meeting the
condition.

320 WU DAFEI

For < {−x+ y, x+ 3y} , {p1,∼ p2} , (3, 2) >, we can only obtain

Γ←< {−x+ y, x+ 3y, x− 4y + 6} , {p1,∼ p2, p3} , (3, 2) > .

However, for path {∼ p1,∼ p2,∼ p3}, it cannot solve the software test data meeting
the condition.

The obtained paths Γ←< {−x+ y, x+ 3y, x− 4y + 6} , {∼ p1,∼ p2, p3} , (1, 2) >
are feasible paths, and the corresponding software test data are t1=(0.5,−0.5),
t2=(−1, 0), t3=(3 , 2) and t4=(1, 2), respectively. The covered sub-path pairs and
predicates are shown in Tables 1 and 2.

Table 1. Subpaths covered by initial software test data set

Test data (p1, p2) (p1, ∼ p2) (∼ p1, p2) (∼ p1, p2) (p2, p3) (∼ p2, p3)

t1 *

t2 * *

t3 * *

t4 * *

Table 2. Predicates covered by initial software test data set

Test data p1 ∼ p1 p2 ∼ p2 p3 ∼ p3

t1 * *

t2 * *

t3 * * *
t4

Table 1 and Table 2 show that the sub-path ∼ p3 is not covered by t1, t2, t3, t4.
According to Step 1 in software test data supplementary algorithm, the obtained
software test data set is the subpath pairs and predicate covered by

{t1 (0.5,−0.5) , t2 (−1, 0) , t3 (3, 2) , t4 (1, 2) , t5 (2, 1) , t6 (1, 1)} ,

which is shown in Tables 3 and 4.

Table 3. Sub-paths covered by software test data set after the first supplement

Test
data

(p1,p2) (p1,∼ p2) (∼ p1,p2) (∼ p1,∼ p2) (p2,p3) (∼ p2,p3) (∼ p2,∼ p3)

t1 *

t2 * *

t3 * *

t4 * *

t5 * *

SOFTWARE TEST DATA GENERATION ALGORITHM 321

Table 4. Predicates covered by software test data set after the first supplement

Test data p1 ∼ p1 p2 ∼ p2 p3 ∼ p3

t1 * *

t2 * *

t3 * * *
t4

t5

Table 3 and Table 4 show that the sub-paths (∼ p1,∼ p2),(∼ p2,∼ p3) meet the
conditions of Step 2 in software test data supplementary algorithm. Therefore,
software test data should be added. Assume that the new added software test
data is t6(1, 1), then the obtained software test data set is the subpath pairs and
predicate covered by {t1 (0.5,−0.5) , t2 (−1, 0) , t3 (3, 2) , t4 (1, 2) , t5 (2, 1) , t6 (1, 1)},
which is shown in Tables 5 and 6.

Table 5. Sub-paths Subpaths covered by software test data set after the second supplement

Test
data

(p1,p2) (p1,∼ p2) (∼ p1,p2) (∼ p1,∼ p2) (p2,p3) (∼ p2,p3) (∼ p2,∼ p3)

t1 *

t2 * *

t3 * *

t4 * *

t5 * *

t6 * *

Table 6. Predicates covered by software test data set after the second supplement

Test data p1 ∼ p1 p2 ∼ p2 p3 ∼ p3

t1 * *

t2 * *

t3 * * *
t4

t5 * * *

t6 * * *

Obviously, Table 5 and Table 6 no longer meet the conditions of the software
test data supplement algorithm. Thus, the finally obtained software test data set is
{t1 (0.5,−0.5) , t2 (−1, 0) , t3 (3, 2) , t4 (1, 2) , t5 (2, 1) , t6 (1, 1)}.

In particular, the software test data

{t1 (0.5,−0.5) , t2 (−1, 0) , t3 (3, 2) , t4 (1, 2) , t5 (2, 1) , t6 (1, 1)}

322 WU DAFEI

obtained in this case covers all the 6 pieces of feasible paths p1p2,∼ p1p2, p1 ∼
p2p3,∼ p1 ∼ p2p3, p1 ∼ p2 ∼ p3 and ∼ p1 ∼ p2 ∼ p3p1 ∼ p2 ∼ p3 in the program.
Finally, in order to further verify the performance of the algorithm, experiments
were conducted depending on the test pool data in literature [12–14] . The results
are shown in Fig. 2. The test results are the average value of each group of program
test.

Fig. 2. Average size of the software test data set and the average number of
detected errors

In Fig. 2, |T | represents the average size of the original software testing data set.
|F | represents the average number of detected errors with the original software test
data set. Quantities |Ts| and |Fs| mean the average number of average size and error
detection software test data obtained by using the proposed algorithm, respectively.
The experimental results show that the novel algorithm proposed in this paper can
effectively reduce the number of software test data on the basis of guarantee the
testing performance.

4. Conclusion

Software test is a very cumbersome and complex but extremely important stage
in software development, especially for large-scale system software and application
software. If the potential errors and defects in the software are not detected in
time, they will cause serious consequences. In this paper, a software test data
generation algorithm based on the idea of multi-dimensional space-time granularity
was proposed. The algorithm analysis and experimental results show that the new
algorithm can effectively reduce the influence of the unfeasible path to the algorithm,
reduce the number of software test data, and improve the test efficiency. The next
step is mainly to approach and solve approximation appropriate software test data
for complex calculus functions, and to test software of structured program containing
the string and numerical calculation and to generate test data automatically.

SOFTWARE TEST DATA GENERATION ALGORITHM 323

References

[1] H.Y.Chen, T.H.Tse: Equality to equals and unequals: A revisit of the equivalence
and nonequivalence criteria in class-level testing of object-oriented software. IEEE
Transactions on Software Engineering 39 (2013), No. 11, 1549–1563.

[2] J.W.Cangussu, R.A.DeCarlo, A. P.Mathur: A formal model of the software
test process. IEEE Transactions on Software Engineering 28 (2002), No. 8, 782–796.

[3] T. J.Ostrand, E. J.Weyuker, R.M.Bell: Predicting the location and number of
faults in large software systems. IEEE Transactions on Software Engineering 31 (2005),
No. 4, 340–355.

[4] H.Li, S.Ding: Research of individual neural network generation and ensemble algo-
rithm based on quotient space granularity clustering. Applied Mathematics & Informa-
tion Sciences 7 (2013), No. 2, 701–708.

[5] X.Yao, D.Gong, W.Wang: Test data generation for multiple paths based on local
evolution. Chinese Journal of Electronics 24 (2015), No. 1, 46–51.

[6] R.L. Zhao, Y.H.Min: Automatic test data generation of character string based on
predicate slice. Journal of Computer Research and Development 39 (2002), No. 4, 473–
481.

[7] C.Chiu, P. L.Hsu: A constraint-based genetic algorithm approach for mining classi-
fication rules. IEEE Transactions on Systems, Man, and Cybernetics, Part C: (Appli-
cations and Reviews) 35 (2005), No. 2, 205–220.

[8] A.Rataj, M.Nowak, P. Pecka: Modelling CTMC with a standard programming
language and using conventions from computer networking. Theoretical and Applied
Informatics 23 (2011), Nos. 3–4, 229–243.

[9] W.Miller, D. L. Spooner: Automatic generation of floating-point test data. IEEE
Transactions on Software Engineering SE–2 (1976), No. 3, 223–226.

[10] M. J.Gallagher, V. L.Narasimhan: ADTEST: A test data generation suite for
Ada software systems. IEEE Transactions on Software Engineering 23, (1997), No. 8,
473–484.

[11] N.Gupta, A. P.Mathur, L.M. Soffa: Automated test data generation using an
iterative relaxation method. International Symposium on Foundations of Software En-
gineering (SIGSOFT), 1–5 November 1998, Lake Buena Vista, FL, USA, ACM SIG-
SOFT Software Engineering Notes 23 (1998), No. 6, 231–244.

[12] M. J.Balcer, W.M.Hasling, T. J.Ostrand: Automatic generation of test scripts
from formal test specifications. Symposium on Software Testing, Analysis, and Verifi-
cation (TAV3), 13–15 December 1989, Key West, FL, USA, ACM SIGSOFT Software
Engineering Notes 14 (1989), No. 8, 210–218.

[13] D. Shin, E. Jee, D.H.Bae: Comprehensive analysis of FBD test coverage criteria
using mutants. Software & Systems Modelings 15 (2016), No. 3, 631–645.

[14] D.Bideau, R.Hékinian: A dynamic model for generating small-scale heterogeneities
in ocean floor basalts. Journal of Geophysical Research 100 (1995), No. B6, 10141 to
10162.

Received June 29, 2017

324 WU DAFEI

	Wu Dafei: Software test data generation algorithm based on multi-dimensional space-time granularity
	Introduction
	Software test data generation algorithm based on multi-dimensional space-time granularity
	Algorithm analysis and experiment
	Conclusion

